quasivariational inequality - définition. Qu'est-ce que quasivariational inequality
DICLIB.COM
Outils linguistiques IA
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:     

Traduction et analyse des mots par intelligence artificielle

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

Qu'est-ce (qui) est quasivariational inequality - définition

PROBABILISTIC INEQUALITY OF PARTIAL SUMS OF INDEPENDENT RANDOM VARIABLES
Kolmogorov inequality; Kolgomorov's inequality; Kolgomorov's Inequality; Kolgomorov inequality

Poincaré inequality         
Poincare inequality; Poincaré's inequality; Poincare's inequality; Poincaré constant; Poincare constant; Poincaré–Wirtinger inequality; Poincaré-Wirtinger inequality; Poincare-Wirtinger inequality
In mathematics, the Poincaré inequality is a result in the theory of Sobolev spaces, named after the French mathematician Henri Poincaré. The inequality allows one to obtain bounds on a function using bounds on its derivatives and the geometry of its domain of definition.
Grönwall's inequality         
THEOREM THAT GIVES BOUNDS ON INTEGRALS OF FUNCTIONS
Gronwall's lemma; Grönwall's lemma; Gronwall inequality; Gronwall lemma; Grönwall inequality; Grönwall lemma; Bellman-Gronwall inequality; Bellman-gronwall inequality; Groenwall's inequality; Groenwall inequality; Groenwall lemma; Groenwall's lemma; Gronwall–Bellman inequality; Gronwall's inequality; Gronwall-Bellman inequality
In mathematics, Grönwall's inequality (also called Grönwall's lemma or the Grönwall–Bellman inequality) allows one to bound a function that is known to satisfy a certain differential or integral inequality by the solution of the corresponding differential or integral equation. There are two forms of the lemma, a differential form and an integral form.
Samuelson's inequality         
INEQUALITY RELATING A SAMPLE MEAN AND STANDARD DEVIATION OF THAT SAMPLE
Laguerre–Samuelson inequality; Laguerre-Samuelson inequality; Laguerre-Samuelson Inequality; Samuelson Inequality; Samuelson inequality; Laguerre–Samuelson Inequality; Samuelson's Inequality; Samuelson–Laguerre Inequality; Samuelson–Laguerre inequality; Samuelson-Laguerre inequality; Samuelson-Laguerre Inequality
In statistics, Samuelson's inequality, named after the economist Paul Samuelson, also called the Laguerre–Samuelson inequality, after the mathematician Edmond Laguerre, states that every one of any collection x1, ..., xn, is within uncorrected sample standard deviations of their sample mean.

Wikipédia

Kolmogorov's inequality

In probability theory, Kolmogorov's inequality is a so-called "maximal inequality" that gives a bound on the probability that the partial sums of a finite collection of independent random variables exceed some specified bound.